AD-A103 129

FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH F/6 11/10

SYNTHESIS AND PROPERTIES OF CROSS-LINKED ELASTOMERS BASED ON PR-ETC(U)

JUL 81 S 9 SOKOLOVA, L Y RAPPORT, O P GALANOV

NL

END

MATIO
19-81

Onc

FTD-ID(R.:)T-0734-81

FOREIGN TECHNOLOGY DIVISION

SYNTHESIS AND PROPERTIES OF CROSS-LINKED ELASTOMERS BASED ON PROPYLENE OXIDE AND DIEPOXIDES

bу

S. G. Soko-ova, L. Ya. Rapport, and O. P. Galanov

Approved for public release; distribution unlimited.

81 8 20 152

EDITED TRANSLATION

 $FTD-ID(RS)T-\phi734-81$ 31 Jul**s** MICROFICHE NR: FTD-81-C-000698

SYNTHESIS AND PROPERTIES OF CROSS-LINKED ELASTOMERS BASED ON PROPYLENE OXIDE AND DIEPOXIDES

Sy: S. G./Sokolova/ L. Ya/Rapport) and O. P./Galanov p

Kauchuk i Rezina Vol. 30, Was 4 1972- pp. 15-8 (USSR) 30 n+

Country of origin: USSR p5-8 1971, by Translated by: Victor Mesenzeff Requester: AFRPL

Approved for public release; distribution unlimited.

Accession For TEAS ARABI 7770 7 8

Distribution / Aveilar bitt for s Avoir Deroyer $\mathbb{E}_{\mathbb{R}^{n}} \to \mathbb{E}_{\mathbb{R}^{n}}$

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD_ID(RS)T-0734-81

Date 31 Jul 19 81 (

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliteration
A a	A a	A, a	Рр	Pp	R, r
ს ნ	Б в	B, b	Сс	C	S, s
В в	B •	V, v	Ττ	T m	T, t
Γг	Γ .	G, g	Уу	Уу	U, u
ДД	Д д	D, d	Фф	Φφ	F, f
Еe	E .	Ye, ye; E, e∗	Х×	X x	Kh, kh
ж ж	<i>X</i>	Zh, zh	Цц	4	Ts, ts
3 з	3 ,	Z, z	4 4	4 4	Ch, ch
Ии	н и	I, i	Шш	Ш ш	Sh, sh
Йй	A a	Y, y	Щщ	Щщ	Sheh, such
Н к	KK	K, k	Ъъ	3 1	ti .
л л	ЛА	L, 1	Ия	W w	Y, y
Pi - 29	М м	M, m	рь	Ь	•
Нн.	Н н	N, n	Ээ	9 1	E, e
0 o	0 0	0, 0	Юю	10 b	Yu, yu
Пп	Пп	P, p	Яя	Яп	Ya, ya

^{*}ye initially, after vowels, and after ъ, ь; e elsewhere. When written as \ddot{e} in Russian, transliterate as $y\ddot{e}$ or \ddot{e} .

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English	Russian	English	Russian	English.
sin	sin	sh	sinh	arc sh	sinh-
cos	cos	ch	cosh	arc ch	cosh
tg	tan	th	tanh	arc th	tann
ctg	cot	cth	coth	arc cth	coth_'
sec	sec	sch	sech	arc sch	sech
cosec	csc	csch	csch	arc csch	csch

Russian	English		
rot	curl		
lg	log		

SYNTHESIS AND PROPERTIES OF CROSS-LINKED ELASTOMERS BASED ON PROPYLENE OXIDE AND DIEPOXIDES

S. G. Sokolova, L. Ya. Rapport, and O. P. Galanov.

In recent years new rubber-like polymers possessing a set of valuable technical properties and which are cured by sulfur have been synthesized by means of a joint polymerization of propylene oxide with an unsaturated monoepoxy compound, for example, with allylglycidyl ether [1-3].

It was reported in the patent literature [4-6] that it is possible to accomplish cross-linking of a polymer immediately during the polymerization process by copolymerization of the mono- and diepoxy compounds.

A study was conducted on the effect of the polymerization conditions on the properties on the spatially cross-linked copolymers of propylene oxide with diglycide glycol ethers of the general formula [7]

The presence of two epoxy groups in the diglycide ethers which are capable of opening up during the reaction creates the conditions for a three-dimensional polymerization and cross-linking of copolymers. This makes it possible to manufacture items by means of casting, realizing synthesis of an elastomer directly in the molds without additional curing.

Effect of the copolymerization conditions on the properties of cross-linked propylene oxide and DIEP-1 elastomers.

	Visite o		ты разыка Дененене сыт програ		Услово померальной		Дей спере с бил програм		Дей спере с отог програм			
\$ 15 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	product that the second to the	o koo parajer T	предолжи 10 деност	trans priypa.	Hander Ber Herr ber die, V	Иценод сопозначена, тек. %	Promineran artistante a formant Qp	To some protection of the sound				
	1		i	i			i	¦				
1,0	1,05	.30	24		l -	89,5	50,0					
1.0	L,37	.30)	42			95.8	11.0	72.0				
1.0	1,37	.10	42	50	1 24	96.1	11.5					
1,0	1,50	\$13	42			93,1	11.6					
1.0	1,50	30	42	50	21	96,0	9,8	73,5				
1,0	1,50	.50	42	7 0	24	91,7	7,7	74.0				
2.0	1,05	30	42	• -		91.0	31,0					
2.0	1,37	30	42	50	24	95,3	11.5] .				
2.0	4,50	.30)	42	50	24	94,7	9,3	-71,0				
2.0	1,50	30	42	80	24	93,2	7,6	-71.0				
3.0	1,50	30	42	80	$\overline{24}$	97.0	7.8					
3,0	1,50	30	42 .	80	48	94.0	7,2	73.0				

KEY: (a) Content of DIEP-l in reaction mixture, mole \$\%\$ (b) Concentration of catalysts in the total number of monomers, mole \$\%\$ (c) Polymerization conditions (d) temperature (e) duration, h
(f) Additional heating (g) Polymer yield, wt. \$\%\$ (h) Equiaxial swelling in benzene (i) Vitrification temperature

Copolymers were obtained in the presence of a catalytic system - dielectric-water. Technical propylene oxide was treated with potassium hydroxide, desiccated by calcined sodium sulfate, and transferred into the Shlenk's [transliterated] training vessel in a stream of argon. Diglycide ethers of ethyleneglycol (DIEP-1) and diethyleneglycol (DIEP-2), after drying over calcined sodium sulfate, were fractionated in vacuum, removing a fraction $118-119^{\circ}$ C/5 mm, in the case of DIEP-1 (d_4° 0=1.1332, n_D° 0=1.4542), and fraction $155-156^{\circ}$ C/2-3 mm in the case of DIEP-2 (d_4° 0=1.1238, n_D° 0=1.4551). Diepoxides were stored in the Shlenk vessels in an argon atmosphere. A dielectric synthesized from the zinc powder and ethyl iodide [8] was used as a solution in n-hexane with a concentration of 0.1 g/ml.

Polymerization took place in glass ampules or airtight molds, which were preconditioned in vacuum and washed with argon. The components were immersed in a stream of argon in the following order: propylene oxide (with an appropriate content of water), diepoxide, diethylzinc with a molar ratio of water:dielectric at 0.8:1. After loading, the cooled ampule was unsoldered, shaken, and the temperature was adjusted to the corresponding conditions. Films of cross-linked polymers were obtained using a centrifugal casting technique with

heating. At the end of the thermostatic control, the elastomer was removed from the ampule or mold and dried in vacuum until its weight became constant.

The extent to which the elastomers were cross-linked was estimated on the basis of an equilibrium swelling of polymers in benzene whose coefficient of compatibility with polypropylene oxide μ =0.2 [9]. The cross-linking density characterized by the value of a molecular weight of the chain segment held between two cross links (M_C) was calculated by the method described in literature [10].

Synthesized cross-linked polymers represent a dense elastic white mass, which is not soluble but can only swell in such media in which propylene-oxide rubber is readily soluble (benzene, chloroform, etc.).

The process of cross-linkage formation during the copolymerization of propylene oxide with the diglycidic ethers of glycols can be presenten schematically as follows:

The results of some tests conducted on the synthesis of elastomers based on DIEP-1 are presented in the table.

During copolymerization the yield of elastomers, in all cases, was over 90% of the weight of the monomer mixture. The vitrification temperature of the obtained elastomers did not differ from that of the linear propylene-oxide rubber ($T_c=-72--74^{\circ}C$). Depending on the conditions of polymerization, the molecular weight of the chain segment between two cross links varied over a wide range ($M_c=9000-100000$).

Fig. 1. Variation in the level of cross linkage of copolymers as a function of the heating period (DIEP-1 content - 0.75 mole %, concentration of the catalyst - 1.25 mole %, and temperature - 30° C).

KEY: (a) Equilibrium swelling (b) Heating period, h

The level of cross linkage of the copolymers can be controlled by varying either the heating duration of the mixture being polymerized with a constant concentration of diepoxide (Fig. 1) or the diepoxide content in the reaction mixture under the temperature-control conditions; the duration of copolymerization is somewhat shortened with a stepped rise of temperature (Fig. 2).

It was established that the level of cross linkage, characterized by the values of equilibrium swelling within the range of 12-17, is optimal for obtaining elastomers with good physical and mechanical indices.

It should be noted that when the DIEP-2 was used, the elastomers had somewhat higher physioco-mechanical indices than in the case of DIEP-1:

	DIEP-1	DIEP-2
Tensile strength, kg/cm ²	70-90	150
Relative elongation, %	600-800	700-900
Permanent elongation, %	20-30	15-20

Cross-linked elastomers based on DIEP-2 are somewhat superior to a nonfilled sulfur vulcanizate SKPO* with respect to the tensile strength and relative elongation, have a lower value of permanent deformation under static compression and a lower brittleness temperature.

Propylene oxide copolymer with allylglycidyl ether (2 mole %).

while their rebound resilience and TM-2 hardness do not differ from the analogous indices of the SKPO vulcanizates:

	Cros: cast	Cross-linked cast elastomer*		Nonfilled SKPO vulcanizate	
Stress at 100% elongation, kg/cm ² at 20°C		10 0		7 7	
at 20°C		21 12		21 14	
at 20°C	• •	177 24		161 14	
Relative elongation. % at 20°C		850 680		690 460	
Permanent elongation, % at 20°C		18 12		8 5	
Rebound resilience, % at 20°C	• •	68 72 - 51		69 75 50	
100°C), % 20 h		52 52 73		77 - -62	

DIEP-2 content - 2.0 mole %, catalyst concentration - 1.05 mole %, period during which the temperature was controlled - 24 h at 30° C and 6 h at 60° C, polymer yield - 94.5%, $Q_p=12.2$, $T_c=-73^{\circ}$ C.

Fig. 2. Variation in the degree of cross linkage of copolymers depending on the content of DIEP-2 in the reaction mixture under various conditions of temperature control (catalyst concentration - 1.05 mole % in total amount of monomers):

1 - 24 h at 30° C and 24 h at 60° C; 2 - 42 h at 30° C and 6 h at 60° C; 3 - 24 h at 30° C and 6 h at 60° C.

With the Work

KEY: (a) Equilibrium swelling (b) DIEP-2 content, mole %

The elastomers that were obtained possess good dielectric properties in the frequency range from 400 Hz to 5 kHz; loss tangent - 0.1-0.12; dielectric constant - 3.0-3.5; and temperature of their maximum -48--55°C.

Thus, a fundamental possibility exists for using the casting method to manufacture articles from propylene-oxide elastomers, which are just as good as the nonfilled sulfur vulcanizates from SKPO with respect to their set of properties.

Bibliography

- 1 Gruber E., Meyer D., Swart G., Weinstock K. Ind Eng. Chem. Prod. Res. Dev. 3, № 2, 191 (1964). 2 Anna mar № 976703.
- З Горин Ю. А., Галкина Г. И., Мар шина А.Н., Рейх В И., Галанов О П Сидорович Е. А. Каучук и резина. ^{Ма} 2 (1968)
- 4. Пат. США № 2765296.
- 5. Дигл. пат. № 857122.

4

- Англ. нат. № 863714.
 Раппопорт Л. Я., Соколова С Г Бляхман Е. М., Пантелеена А Г Ант. свид. № 223335. Бюлл. илобр № 21 (1²⁶)
 Иевердина И. И., Кочешков К М.
- Методы элементарно-органической химин. М. ^{во}
- ellaykas, 1964 9. Allen G., Grossley H. Polymer, 5, M^T 553 (1964).
- 10. Поддубный П. Я., Эренбург Е [†] Каучук и решина, № 6, 16 (1959),

All-Union Scientific Research Institute of Synthetic Rubber im. S. V. Lebedev

Received 8/1/1970.

mondanted (15)

Photologica Discretion acceptant

ORGANIZAT GA	MICROFICIE
A20% (TWITE	1 .
V510 (VVV)	1
B344 GIA/RIS-2C	9 :
CO13 OPWILLY	ì
CSOU TIONAX	2
COON HALLISTIC RUS LAD	l
CS10 RET LAUS/AVRAILLM	<u> </u>
CSTI NEGOLATA	7
CS 15 AVIVALX CM/TSARCOM	. .
C539 TIMBANA	1
CS91 FORC	4
COLO MIN HITCHOND	<u>.</u>
D008 N15C	
E053 hig Usaf/Inet	1
5403 AESC/1NA	1
E404 AUXYXXF	1
EGOR VEMI	\(\)
EGIO NO/IND	ì
6429 56/INO	1
1005 DJC/15A/DDI	<u> </u>
PUSO CINVOCIVADD/SD	2
AFTT/LDE	1
£,10	
() 11	1
n1\varphi1ns	1
NI(S	2
1,1111./Code 1389	1
NASA/NST-44	1
N2V1513/10F	2

